Increased mitochondrial K(ATP) channel activity during chronic myocardial hypoxia: is cardioprotection mediated by improved bioenergetics?

نویسندگان

  • J T Eells
  • M M Henry
  • G J Gross
  • J E Baker
چکیده

Increased resistance to myocardial ischemia in chronically hypoxic immature rabbit hearts is associated with activation of ATP-sensitive K(+) (K(ATP)) channels. We determined whether chronic hypoxia from birth alters the function of the mitochondrial K(ATP) channel. The K(ATP) channel opener bimakalim (1 micromol/L) increased postischemic recovery of left ventricular developed pressure in isolated normoxic (FIO(2)=0.21) hearts to values (42+/-4% to 67+/-5% ) not different from those of hypoxic controls but did not alter postischemic recovery of developed pressure in isolated chronically hypoxic (FIO(2)=0.12) hearts (69+/-5% to 72+/-5%). Conversely, the K(ATP) channel blockers glibenclamide (1 micromol/L) and 5-hydroxydecanoate (5-HD, 300 micromol/L) attenuated the cardioprotective effect of hypoxia but had no effect on postischemic recovery of function in normoxic hearts. ATP synthesis rates in hypoxic heart mitochondria (3.92+/-0.23 micromol ATP. min(-1). mg mitochondrial protein(-1)) were significantly greater than rates in normoxic hearts (2.95+/-0.08 micromol ATP. min(-1). mg mitochondrial protein(-1)). Bimakalim (1 micromol/L) decreased the rate of ATP synthesis in normoxic heart mitochondria consistent with mitochondrial K(ATP) channel activation and mitochondrial depolarization. The effect of bimakalim on ATP synthesis was antagonized by the K(ATP) channel blockers glibenclamide (1 micromol/L) and 5-HD (300 micromol/L) in normoxic heart mitochondria, whereas glibenclamide and 5-HD alone had no effect. In hypoxic heart mitochondria, the rate of ATP synthesis was not affected by bimakalim but was attenuated by glibenclamide and 5-HD. We conclude that mitochondrial K(ATP) channels are activated in chronically hypoxic rabbit hearts and implicate activation of this channel in the improved mitochondrial bioenergetics and cardioprotection observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myocardial impairment in chronic hypoxia is abolished by short aeration episodes: involvement of K+ATP channels.

In vivo exposure to chronic hypoxia is considered to be a cause of myocardial dysfunction, thereby representing a deleterious condition, but repeated aeration episodes may exert some cardioprotection. We investigated the possible role of ATP-sensitive potassium channels in these mechanisms. First, rats (n = 8/group) were exposed for 14 days to either chronic hypoxia (CH; 10% O(2)) or chronic hy...

متن کامل

Warm ischemic preconditioning improves mitochondrial redox balance during and after mild hypothermic ischemia in guinea pig isolated hearts.

Ischemic preconditioning (IPC) induces distinctive changes in mitochondrial bioenergetics during warm (37 degrees C) ischemia and improves function and tissue viability on reperfusion. We examined whether IPC before 2 h of hypothermic (27 degrees C) ischemia affords additive cardioprotection and improves mitochondrial redox balance assessed by mitochondrial NADH and flavin adenine dinucleotide ...

متن کامل

Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection.

Coronary artery disease and its sequelae-ischemia, myocardial infarction, and heart failure-are leading causes of morbidity and mortality in man. Considerable effort has been devoted toward improving functional recovery and reducing the extent of infarction after ischemic episodes. As a step in this direction, it was found that the heart was significantly protected against ischemia-reperfusion ...

متن کامل

MCC-134, a blocker of mitochondrial and opener of sarcolemmal ATP-sensitive K+ channels, abrogates cardioprotective effects of chronic hypoxia.

We examined the effect of MCC-134, a novel inhibitor of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels and activator of sarcolemmal ATP-sensitive K(+) (sarcK(ATP)) channels, on cardioprotection conferred by adaptation to chronic hypoxia. Adult male Wistar rats were exposed to intermittent hypobaric hypoxia (7000 m, 8 h/day, 5-6 weeks) and susceptibility of their hearts to ventricular ar...

متن کامل

Contractile recovery of heart muscle after hypothermic hypoxia is improved by nicorandil via mitochondrial K(ATP) channels.

BACKGROUND The ATP-sensitive potassium channel (K(ATP)) opener nicorandil used instead of potassium in hypothermic cardioplegia significantly improves preservation of cardiac function and energetics in the in situ heart preparation. The present study, therefore, examines the effect of nicorandil at different temperatures and the role of sarcolemmal and mitochondrial K(ATP) channels under ex viv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 87 10  شماره 

صفحات  -

تاریخ انتشار 2000